转载请注明出处:https://gaussic.github.io

参照github上happynear的caffe-windows项目,将Caffe for Windows配置成功,并且测试了其转换好的mnist数据库,不论是速度还是结果上,效果都相当好。现总结一下配置方法。

实验环境

操作系统 Windows 10 Professional
CPU Intel Core i5-4590
GPU Nvidia GeForce GTX 970
VS Microsoft Visual Studio 2013
CUDA CUDA 7.5

软件安装

首先需要安装Visual Studio 2013。

然后再安装CUDA 7.5。注意先后顺序。

配置

下载整个的caffe-windows项目,解压缩到所需目录下,例如本文中 D:\caffe。

1.png

下载作者制作的三方库并解压缩到项目的3rdparty目录。解压好后,将3rdparty/bin文件夹加入到环境变量PATH中,这样程序才能找到这些三方dll。

编译

  1. 双击./src/caffe/proto/extractproto.bat批处理文件来生成caffe.pb.h和caffe.pb.cc两个c++文件,和caffepb2.py这个python使用的文件。
  2. 打开./buildVS2013/MainBuilder.sln,打开之后切换编译模式至Release X64模式。
  3. 修改设置中的compute capability(caffelib –> 属性 –> CUDA C/C++ –> Device –> Code Generation)
GPU Computer Capability
GTX660, 680, 760, 770 compute_30,sm_30
GTX780, Titan Z, Titan Black, K20, K40 compute_35,sm_35
GTX960, 970, 980, Titan X compute_52,sm_52

3.png

你可以在https://en.wikipedia.org/wiki/CUDA上查看你的GPU所对应的Computer Capability。

点击工具栏绿色箭头进行编译,需要一定时间。

2.png

测试

下载作者已经转换好的MNIST的leveldb数据文件,解压到./examples/mnist文件夹中,然后运行根目录下的run_mnist.bat即可开始训练,日志会保存在./log文件夹中。可看到,迭代10000次,准确率达到了0.9925。

4.png

若有更新,请到文中所给链接处实时查看。